If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2x-0.0125=0
a = 5; b = -2; c = -0.0125;
Δ = b2-4ac
Δ = -22-4·5·(-0.0125)
Δ = 4.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{4.25}}{2*5}=\frac{2-\sqrt{4.25}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{4.25}}{2*5}=\frac{2+\sqrt{4.25}}{10} $
| 20+11d=7d | | 16=x/4+12 | | 3x+3=18+18+6x | | 8x+-7=5x+1 | | 3x+3=18+6x | | 180=3(x+1)+4(2x+5) | | 2q^2+76q=0 | | 6(2-2x)=-12 | | 36n=-81n^2-4 | | 180=(2x+1)+3x-10 | | 2(2x-1)-(x-2)=0 | | z^2+31z=0 | | 6p^2-216=0 | | u/2-11=12 | | 3x+20(4×-6)=18+x | | 5x=3+2x-6 | | F(2)=10x-8 | | 10*(x-1)+100=160 | | 3x-7=-19-x | | 10X(x-1)+100=160 | | j^2-9j-22=0 | | 20=8/2*h | | 7f^2-36f+5=0 | | Z=5y | | 180=45+5x+x | | -3/2=-4/3x-1/5 | | 15y=48+9y | | 3n+25=68 | | 4q^2+29q+7=0 | | 11u-3u=32 | | 6(n+2)=30 | | k^2+42k=0 |